blog post - RISC2 Project https://www.risc2-project.eu Wed, 06 Sep 2023 10:42:35 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México https://www.risc2-project.eu/2023/05/24/subsequent-progress-and-challenges-concerning-the-mexico-ue-project-enerxico-supercomputing-and-energy-for-mexico/ Wed, 24 May 2023 09:38:01 +0000 https://www.risc2-project.eu/?p=2824 In this short notice, we briefly describe some afterward advances and challenges with respect to two work packages developed in the ENERXICO Project. This opened the possibility of collaborating with colleagues from institutions that did not participate in the project, for example from the University of Santander in Colombia and from the University of Vigo […]

The post Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México first appeared on RISC2 Project.

]]>
In this short notice, we briefly describe some afterward advances and challenges with respect to two work packages developed in the ENERXICO Project. This opened the possibility of collaborating with colleagues from institutions that did not participate in the project, for example from the University of Santander in Colombia and from the University of Vigo in Spain. This exemplifies the importance of the RISC2 project in the sense that strengthening collaboration and finding joint research areas and HPC applied ventures is of great benefit for both: our Latin American Countries and the EU. We are now initiating talks to target several Energy related topics with some of the RISC2 partners. 

The ENERXICO Project focused on developing advanced simulation software solutions for oil & gas, wind energy and transportation powertrain industries.  The institutions that collaborated in the project are for México: ININ (Institution responsible for México), Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Universidad Nacional Autónoma de México (UNAM IINGEN, FCUNAM), Universidad Autónoma Metropolitana-Azcapotzalco, Instituto Mexicano del Petróleo, Instituto Politécnico Nacional (IPN) and Pemex, and for the European Union: Centro de Supercómputo de Barcelona (Institution responsible for the EU), Technische Universitäts München, Alemania (TUM), Universidad de Grenoble Alpes, Francia (UGA), CIEMAT, España, Repsol, Iberdrola, Bull, Francia e Universidad Politécnica de Valencia, España.  

The Project contemplated four working packages (WP): 

WP1 Exascale Enabling: This was a cross-cutting work package that focused on assessing performance bottlenecks and improving the efficiency of the HPC codes proposed in vertical WP (UE Coordinator: BULL, MEX Coordinator: CINVESTAV-COMPUTACIÓN); 

WP2 Renewable energies:  This WP deployed new applications required to design, optimize and forecast the production of wind farms (UE Coordinator: IBR, MEX Coordinator: ININ); 

WP3 Oil and gas energies: This WP addressed the impact of HPC on the entire oil industry chain (UE Coordinator: REPSOL, MEX Coordinator: ININ); 

WP4 Biofuels for transport: This WP displayed advanced numerical simulations of biofuels under conditions similar to those of an engine (UE Coordinator: UPV-CMT, MEX Coordinator: UNAM); 

For WP1 the following codes were optimized for exascale computers: Alya, Bsit, DualSPHysics, ExaHyPE, Seossol, SEM46 and WRF.   

As an example, we present some of the results for the DualPHYysics code. We evaluated two architectures: The first set of hardware used were identical nodes, each equipped with 2 ”Intel Xeon Gold 6248 Processors”, clocking at 2.5 GHz with about 192 GB of system memory. Each node contained 4 Nvidia V100 Tesla GPUs with 32 GB of main memory each. The second set of hardware used were identical nodes, each equipped with 2 ”AMD Milan 7763 Processors”, clocking at 2.45 GHz with about 512 GB of system memory. Each node contained 4 Nvidia V100 Ampere GPUs with 40 GB of main memory each. The code was compiled and linked with CUDA 10.2 and OpenMPI 4. The application was executed using one GPU per MPI rank. 

In Figures 1 and 2 we show the scalability of the code for the strong and weak scaling tests that indicate that the scaling is very good. Motivated by these excellent results, we are in the process of performing in the LUMI supercomputer new SPH simulations with up to 26,834 million particles that will be run with up to 500 GPUs, which is 53.7 million particles per GPU. These simulations will be done initially for a Wave Energy Converter (WEC) Farm (see Figure 3), and later for turbulent models. 

Figure 1. Strong scaling test with a fix number of particles but increasing number of GPUs.

 

Figure 2. Weak scaling test with increasing number of particles and GPUs.

 

Figure 3. Wave Energy Converter (WEC) Farm (taken from https://corpowerocean.com/)

 

As part of WP3, ENERXICO developed a first version of a computer code called Black Hole (or BH code) for the numerical simulation of oil reservoirs, based on the numerical technique known as Smoothed Particle Hydrodynamics or SPH. This new code is an extension of the DualSPHysics code (https://dual.sphysics.org/) and is the first SPH based code that has been developed for the numerical simulation of oil reservoirs and has important benefits versus commercial codes based on other numerical techniques.  

The BH code is a large-scale massively parallel reservoir simulator capable of performing simulations with billions of “particles” or fluid elements that represent the system under study. It contains improved multi-physics modules that automatically combine the effects of interrelated physical and chemical phenomena to accurately simulate in-situ recovery processes. This has led to the development of a graphical user interface, considered as a multiple-platform application for code execution and visualization, and for carrying out simulations with data provided by industrial partners and performing comparisons with available commercial packages.  

Furthermore, a considerable effort is presently being made to simplify the process of setting up the input for reservoir simulations from exploration data by means of a workflow fully integrated in our industrial partners’ software environment.  A crucial part of the numerical simulations is the equation of state.  We have developed an equation of state based on crude oil data (the so-called PVT) in two forms, the first as a subroutine that is integrated into the code, and the second as an interpolation subroutine of properties’ tables that are generated from the equation of state subroutine.  

An oil reservoir is composed of a porous medium with a multiphase fluid made of oil, gas, rock and other solids. The aim of the code is to simulate fluid flow in a porous medium, as well as the behaviour of the system at different pressures and temperatures.  The tool should allow the reduction of uncertainties in the predictions that are carried out. For example, it may answer questions about the benefits of injecting a solvent, which could be CO2, nitrogen, combustion gases, methane, etc. into a reservoir, and the times of eruption of the gases in the production wells. With these estimates, it can take the necessary measures to mitigate their presence, calculate the expense, the pressure to be injected, the injection volumes and most importantly, where and for how long. The same happens with more complex processes such as those where fluids, air or steam are injected, which interact with the rock, oil, water and gas present in the reservoir. The simulator should be capable of monitoring and preparing measurement plans. 

In order to be able to perform a simulation of a reservoir oil field, an initial model needs to be created.  Using geophysical forward and inverse numerical techniques, the ENERXICO project evaluated novel, high-performance simulation packages for challenging seismic exploration cases that are characterized by extreme geometric complexity. Now, we are undergoing an exploration of high-order methods based upon fully unstructured tetrahedral meshes and also tree-structured Cartesian meshes with adaptive mesh refinement (AMR) for better spatial resolution. Using this methodology, our packages (and some commercial packages) together with seismic and geophysical data of naturally fractured reservoir oil fields, are able to create the geometry (see Figure 4), and exhibit basic properties of the oil reservoir field we want to study.  A number of numerical simulations are performed and from these oil fields exploitation scenarios are generated.

 

Figure 4. A detail of the initial model for a SPH simulation of a porous medium.

 

More information about the ENERXICO Project can be found in: https://enerxico-project.eu/

By: Jaime Klapp (ININ, México) and Isidoro Gitler (Cinvestav, México)

 

 

 

 

The post Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México first appeared on RISC2 Project.

]]>
Mapping human brain functions using HPC https://www.risc2-project.eu/2023/02/01/mapping-human-brain-functions-using-hpc/ Wed, 01 Feb 2023 13:17:19 +0000 https://www.risc2-project.eu/?p=2697 ContentMAP is the first Portuguese project in the field of Psychology and Cognitive Neuroscience to be awarded with European Research Council grant (ERC Starting Grant #802553). In this project one is mapping how the human brain represents object knowledge – for example, how one represents in the brain all one knows about a knife (that […]

The post Mapping human brain functions using HPC first appeared on RISC2 Project.

]]>
ContentMAP is the first Portuguese project in the field of Psychology and Cognitive Neuroscience to be awarded with European Research Council grant (ERC Starting Grant #802553). In this project one is mapping how the human brain represents object knowledge – for example, how one represents in the brain all one knows about a knife (that it cuts, that it has a handle, that is made out of metal and plastic or metal and wood, that it has a serrated and sharp part, that it is smooth and cold, etc.)? To do this, the project collects numerous MRI images while participants see and interact with objects (fMRI). HPC (High Performance Computing) is of central importance for processing these images . The use of HPC has allowed to manipulate these data, perform analysis with machine learning and complex computing in a timely manner.

Humans are particularly efficient at recognising objects – think about what surrounds us: one recognises the object where one is reading the text from as a screen, the place where one sits as a chair, the utensil in which one drinks coffee as a cup, and one does all of this extremely quickly and virtually automatically. One is able to do all this despite the fact that 1) one holds large amounts of information about each object (if one is asked to write down everything you know about a pen, you would certainly have a lot to say); and that 2) there are several exemplars of each object type (a glass can be tall, made out of glass, metal, paper or plastic, it can be different colours, etc. – but despite that, any of them would still be a glass). How does one do this? How one is able to store and process so much information in the process of recognising a glass, and generalise all the different instances of a glass to get the concept “glass”? The goal of the ContentMAP is to understand the processes that lead to successful object recognition.

The answer to these question lies in better understanding of the organisational principles of information in the brain. It is, in fact, the efficient organisation of conceptual information and object representations in the brain that allows one to quickly and efficiently recognise the keyboard that is in front of each of us. To study the neuronal organisation of object knowledge, the project collects large sets of fMRI data from several participants, and then try to decode the organisational principles of information in the brain.

Given the amount of data and the computational requirements of this type of data at the level of pre-processing and post processing, the use of HPC is essential to enable these studies to be conducted in a timely manner. For example, at the post-processing level, the project uses whole brain Support Vector Machine classification algorithms (searchlight procedures) that require hundreds of thousands of classifiers to be trained. Moreover, for each of these classifiers one needs to compute a sample distribution of the average, as well as test the various classifications of interest, and this has to be done per participant.

Because of this, the use of HPC facilities of of the Advanced Computing Laboratory (LCA) at University of Coimbra is crucial. It allows us to actually perform these analyses in one to two weeks – something that on our 14-core computers would take a few months, which in pratice would mean, most probably, that the analysis would not be done. 

By Faculty of Psychology and Educational Sciences, University of Coimbra

 

Reference 

ProAction Lab http://proactionlab.fpce.uc.pt/ 

The post Mapping human brain functions using HPC first appeared on RISC2 Project.

]]>
RISC2 supported ACM Europe Summer School 2022 https://www.risc2-project.eu/2022/09/20/risc2-supported-acm-europe-summer-school-2022/ Tue, 20 Sep 2022 15:49:19 +0000 https://www.risc2-project.eu/?p=2356 The 2022 ACM Europe Summer School on “HPC Computer Architectures for AI and Dedicated Applications” was hosted by the Barcelona Supercomputing Center, RISC2’s coordinator, and the Universitat Politècnica de Catalunya. The event took place between August 29 and September 2. The RISC2 project supported the participation of five Latin American students, boosting the exchange of […]

The post RISC2 supported ACM Europe Summer School 2022 first appeared on RISC2 Project.

]]>
The 2022 ACM Europe Summer School on “HPC Computer Architectures for AI and Dedicated Applications” was hosted by the Barcelona Supercomputing Center, RISC2’s coordinator, and the Universitat Politècnica de Catalunya. The event took place between August 29 and September 2.

The RISC2 project supported the participation of five Latin American students, boosting the exchange of experience and knowledge between Europe and Latin America on the HPC fields. After the Summer School, the students whose participation supported by RISC2 wrote on a blog post: “We have brought home a new vision of the world of computing, new contacts, and many new perspectives that we can apply in our studies and share with our colleagues in the research groups and, perhaps, start a new foci of study”.

Distinguished scientists in the HPC field gave lectures and tutorials addressing architecture, software stack and applications for HPC and AI, invited talks, a panel on The Future of HPC and a final keynote by Prof Mateo Valero. On the last day of the week, the ACM School merged with MATEO2022 (“Multicore Architectures and Their Effective Operation 2022”), attended by world-class experts in computer architecture in the HPC field.

The ACM Europe Summer School joined 50 participants, from 28 different countries, from young computer science researchers and engineers, outstanding MSC students, and senior undergraduate students.

The post RISC2 supported ACM Europe Summer School 2022 first appeared on RISC2 Project.

]]>