carla 2022 - RISC2 Project https://www.risc2-project.eu Fri, 01 Sep 2023 13:48:31 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Developing Efficient Scientific Gateways for Bioinformatics in Supercomputer Environments Supported by Artificial Intelligence https://www.risc2-project.eu/2023/03/20/developing-efficient-scientific-gateways-for-bioinformatics-in-supercomputer-environments-supported-by-artificial-intelligence/ Mon, 20 Mar 2023 09:37:46 +0000 https://www.risc2-project.eu/?p=2781 Scientific gateways bring enormous benefits to end users by simplifying access and hiding the complexity of the underlying distributed computing infrastructure. Gateways require significant development and maintenance efforts. BioinfoPortal[1], through its CSGrid[2]  middleware, takes advantage of Santos Dumont [3] heterogeneous resources. However, task submission still requires a substantial step regarding deciding the best configuration that […]

The post Developing Efficient Scientific Gateways for Bioinformatics in Supercomputer Environments Supported by Artificial Intelligence first appeared on RISC2 Project.

]]>
Scientific gateways bring enormous benefits to end users by simplifying access and hiding the complexity of the underlying distributed computing infrastructure. Gateways require significant development and maintenance efforts. BioinfoPortal[1], through its CSGrid[2]  middleware, takes advantage of Santos Dumont [3] heterogeneous resources. However, task submission still requires a substantial step regarding deciding the best configuration that leads to efficient execution. This project aims to develop green and intelligent scientific gateways for BioinfoPortal supported by high-performance computing environments (HPC) and specialised technologies such as scientific workflows, data mining, machine learning, and deep learning. The efficient analysis and interpretation of Big Data opens new challenges to explore molecular biology, genetics, biomedical, and healthcare to improve personalised diagnostics and therapeutics; finding new avenues to deal with this massive amount of information becomes necessary. New Bioinformatics and Computational Biology paradigms drive storage, management, and data access. HPC and Big Data advanced in this domain represent a vast new field of opportunities for bioinformatics researchers and a significant challenge. the BioinfoPortal science gateway is a multiuser Brazilian infrastructure. We present several challenges for efficiently executing applications and discuss the findings on improving the use of computational resources. We performed several large-scale bioinformatics experiments that are considered computationally intensive and time-consuming. We are currently coupling artificial intelligence to generate models to analyze computational and bioinformatics metadata to understand how automatic learning can predict computational resources’ efficient use. The computational executions are conducted at Santos Dumont, the largest supercomputer in Latin America, dedicated to the research community with 5.1 Petaflops and 36,472 computational cores distributed in 1,134 computational nodes.

By:

Carneiro, B. Fagundes, C. Osthoff, G. Freire, K. Ocaña, L. Cruz, L. Gadelha, M. Coelho, M. Galheigo, and R. Terra are with the National Laboratory of Scientific Computing, Rio de Janeiro, Brazil.

Carvalho is with the Federal Center for Technological Education Celso Suckow da Fonseca, Rio de Janeiro, Brazil.

Douglas Cardoso is with the Polytechnic Institute of Tomar, Portugal.

Boito and L, Teylo is with the University of Bordeaux, CNRS, Bordeaux INP, INRIA, LaBRI, Talence, France.

Navaux is with the Informatics Institute, the Federal University of Rio Grande do Sul, and Rio Grande do Sul, Brazil.

References:

Ocaña, K. A. C. S.; Galheigo, M.; Osthoff, C.; Gadelha, L. M. R.; Porto, F.; Gomes, A. T. A.; Oliveira, D.; Vasconcelos, A. T. BioinfoPortal: A scientific gateway for integrating bioinformatics applications on the Brazilian national high-performance computing network. Future Generation Computer Systems, v. 107, p. 192-214, 2020.

Mondelli, M. L.; Magalhães, T.; Loss, G.; Wilde, M.; Foster, I.; Mattoso, M. L. Q.; Katz, D. S.; Barbosa, H. J. C.; Vasconcelos, A. T. R.; Ocaña, K. A. C. S; Gadelha, L. BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments. PeerJ, v. 1, p. 1, 2018.

Coelho, M.; Freire, G.; Ocaña, K.; Osthoff, C.; Galheigo, M.; Carneiro, A. R.; Boito, F.; Navaux, P.; Cardoso, D. O. Desenvolvimento de um Framework de Aprendizado de Máquina no Apoio a Gateways Científicos Verdes, Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro In: XXIII Simpósio em Sistemas Computacionais de Alto Desempenho – WSCAD 2022 (https://wscad.ufsc.br/), 2022.

Terra, R.; Ocaña, K.; Osthoff, C.; Cruz, L.; Boito, F.; Navaux, P.; Carvalho, D. Framework para a Construção de Redes Filogenéticas em Ambiente de Computação de Alto Desempenho. In: XXIII Simpósio em Sistemas Computacionais de Alto Desempenho – WSCAD 2022 (https://wscad.ufsc.br/), 2022.

Ocaña, K.; Cruz, L.; Coelho, M.; Terra, R.; Galheigo, M.; Carneiro, A.; Carvalho, D.; Gadelha, L.; Boito, F.; Navaux, P.; Osthoff, C. ParslRNA-Seq: an efficient and scalable RNAseq analysis workflow for studies of differentiated gene expression. In: Latin America High-Performance Computing Conference (CARLA), 2022, Rio Grande do Sul, Brazil. Proceedings of the Latin American High-Performance Computing Conference – CARLA 2022 (http://www.carla22.org/), 2022.

[1] https://bioinfo.lncc.br/

[2] https://git.tecgraf.puc-rio.br/csbase-dev/csgrid/-/tree/CSGRID-2.3-LNCC

[3] https://https://sdumont.lncc.br

The post Developing Efficient Scientific Gateways for Bioinformatics in Supercomputer Environments Supported by Artificial Intelligence first appeared on RISC2 Project.

]]>
LNCC participated in the 19th Brazilian Science and Technology National Week https://www.risc2-project.eu/2022/12/19/lncc-participated-in-the-19th-brazilian-science-and-technology-national-week/ Mon, 19 Dec 2022 14:09:22 +0000 https://www.risc2-project.eu/?p=2624 Carla Osthoff, LNCC’s researcher, presented the Santos Dumont Supercomputer on the 19th Brazilian Science and Technology National Week, organised by the Brazilian Ministry of Science and Technology. The talk “The Santos Dumont Supercomputer in the scenario of National and International Scientific Research” was presented on December 3, 2022, and is available here. 

The post LNCC participated in the 19th Brazilian Science and Technology National Week first appeared on RISC2 Project.

]]>
Carla Osthoff, LNCC’s researcher, presented the Santos Dumont Supercomputer on the 19th Brazilian Science and Technology National Week, organised by the Brazilian Ministry of Science and Technology.

The talk “The Santos Dumont Supercomputer in the scenario of National and International Scientific Research” was presented on December 3, 2022, and is available here. 

The post LNCC participated in the 19th Brazilian Science and Technology National Week first appeared on RISC2 Project.

]]>
Advanced Computing Collaboration to Growth Sustainable Ecosystems https://www.risc2-project.eu/2022/12/12/advanced-computing-collaboration-to-growth-sustainable-ecosystems/ Mon, 12 Dec 2022 10:45:48 +0000 https://www.risc2-project.eu/?p=2612 The impact of High-Performance Computing (HPC) in different contexts related to the needs of high capabilities and strategies to simulate or to compute is very known. In the development of the RISC2 project, observing the project’s main goals, it is not a potential impact to support scientific challenges recognised after the exploration but an essential […]

The post Advanced Computing Collaboration to Growth Sustainable Ecosystems first appeared on RISC2 Project.

]]>
The impact of High-Performance Computing (HPC) in different contexts related to the needs of high capabilities and strategies to simulate or to compute is very known. In the development of the RISC2 project, observing the project’s main goals, it is not a potential impact to support scientific challenges recognised after the exploration but an essential requirement for scientific, productive, and social activities. Different outcomes are presented in the academic spaces as the workshops and main tracks of the Latin American Conference on High-Performance Computing (CARLA 2023). In these spaces, different RISC2 proposals show how HPC allows competitiveness, demands collaboration to attack global interests, and guarantees sustainability.

In the European and Latin American (EuroLatAm) HPC ecosystems, it tis possible to identify actors in different domains: industry, academy, research, society, and government. Each of them, at different levels, has a group of demands or interactions, depending on the interests. I.e., the industry demands capabilities to have HPC solutions for productivity and wants skills from the academy to perform development actors to build applications to use solutions. Another example could be the relationship between research and the government. In the HPC Ecosystem, collaborations allow synergies to face common interests. Still, it demands policies and coordinated roadmaps to support long-term projects and activities with a clear impact on society.

Of course, a historical relationship exists between Latin America and Europe from colonial history. In the case of advanced computing projects, it is possible to identify, from the first EuroLatAm Grid Computing projects more than twenty years ago until the real supercomputing projects such as RISC and RISC2. Still, now, more with shared interests and the different EuroLatAm HPC projects improve competitiveness and collaboration. Competitiveness for industrial and productive business, partnership (and competitiveness) in science and education goals, and human wellness. So paraphrasing Mateo Valero “who does not compute does not compete”, I would add “who does not collaborate does not survive”.

Taking collaboration and competitiveness, the RISC2 project allows identifying sustainability elements and sustainable workflows for different projects. The impressive interaction between the actors of the HPC EuroLatAm ecosystem has not only given scientific results but also policies, recommendations, best practices, and new questions. For these outcomes, in the past 2022 Supercomputing Conference, RISC2 was awarded the 2022 HPCWire Editors’ Choice Award as the Best HPC Collaboration.

Sustainable advanced computing ecosystems and their growth are evident with the knowledge of the results of projects such as RISC2. Collaboration, interaction, and competitiveness build human development and guarantee development, technological diversification, and peer-to-peer relationships to attack common interests and problems. So, RISC2 is a crucial step to advance to a RISC3 as it was at the time of the previous RISC.

 

By Universidad Industrial de Santander

The post Advanced Computing Collaboration to Growth Sustainable Ecosystems first appeared on RISC2 Project.

]]>
LNCC is making efforts to promote the best HPC practices https://www.risc2-project.eu/2022/11/28/lncc-is-making-efforts-to-promote-the-best-hpc-practices/ Mon, 28 Nov 2022 09:16:45 +0000 https://www.risc2-project.eu/?p=2608 Our partner LNCC participated in different events to promote interaction and exchange of knowledge and the best HPC practices between Europe and Latin America. On November 7, 2022, LNCC researchers, Carla Osthoff and Kary Ocaña, participated in a seminar in collaboration with our partner Inria, with a presentation entitle “Developing Efficient Scientific Gateways for Bioinformatics […]

The post LNCC is making efforts to promote the best HPC practices first appeared on RISC2 Project.

]]>
Our partner LNCC participated in different events to promote interaction and exchange of knowledge and the best HPC practices between Europe and Latin America.

On November 7, 2022, LNCC researchers, Carla Osthoff and Kary Ocaña, participated in a seminar in collaboration with our partner Inria, with a presentation entitle “Developing Efficient Scientific Gateways for Bioinformatics in Supercomputer Environments Supported by Artificial Intelligence”. The seminar aimed at promoting the interaction between LNCC’s and Inria’s high-performance computing researchers.

On November 18, Carla Osthoff participated in a seminar organized by the University of Campinas, where she presented the Santos Dumont Supercomputer. The event aimed to promote the exchange of the best HPC practices, promoting the interaction between computer science researchers towards the definition of a coordinated policy and a concrete roadmap for the future.

On November 23, Carla Osthoff also presented the Santos Dumont Supercomputer, on an online lecture, organized by the Research Centre in Digitalization and Intelligent Robotics of the Polytechnic Institute of Bragança, promoting the knowledge exchange between both regions.

The post LNCC is making efforts to promote the best HPC practices first appeared on RISC2 Project.

]]>
Managing Data and Machine Learning Models in HPC Applications https://www.risc2-project.eu/2022/11/21/managing-data-and-machine-learning-models-in-hpc-applications/ Mon, 21 Nov 2022 14:09:42 +0000 https://www.risc2-project.eu/?p=2508 The synergy of data science (including big data and machine learning) and HPC yields many benefits for data-intensive applications in terms of more accurate predictive data analysis and better decision making. For instance, in the context of the HPDaSc (High Performance Data Science) project between Inria and Brazil, we have shown the importance of realtime […]

The post Managing Data and Machine Learning Models in HPC Applications first appeared on RISC2 Project.

]]>
The synergy of data science (including big data and machine learning) and HPC yields many benefits for data-intensive applications in terms of more accurate predictive data analysis and better decision making. For instance, in the context of the HPDaSc (High Performance Data Science) project between Inria and Brazil, we have shown the importance of realtime analytics to make critical high-consequence decisions in HPC applications, e.g., preventing useless drilling based on a driller’s realtime data and realtime visualization of simulated data, or the effectiveness of ML to deal with scientific data, e.g., computing Probability Density Functions (PDFs) over simulated seismic data using Spark.

However, to realize the full potential of this synergy, ML models (or models for short) must be built, combined and ensembled, which can be very complex as there can be many models to select from. Furthermore, they should be shared and reused, in particular, in different execution environments such as HPC or Spark clusters.

To address this problem, we proposed Gypscie [Porto 2022, Zorrilla 2022], a new framework that supports the entire ML lifecycle and enables model reuse and import from other frameworks. The approach behind Gypscie is to combine several rich capabilities for model and data management, and model execution, which are typically provided by different tools, in a unique framework. Overall, Gypscie provides: a platform for supporting the complete model life-cycle, from model building to deployment, monitoring and policies enforcement; an environment for casual users to find ready-to-use models that best fit a particular prediction problem, an environment to optimize ML task scheduling and execution; an easy way for developers to benchmark their models against other competitive models and improve them; a central point of access to assess models’ compliance to policies and ethics and obtain and curate observational and predictive data; provenance information and model explainability. Finally, Gypscie interfaces with multiple execution environments to run ML tasks, e.g., an HPC system such as the Santos Dumont supercomputer at LNCC or a Spark cluster. 

Gypscie comes with SAVIME [Silva 2020], a multidimensional array in-memory database system for importing, storing and querying model (tensor) data. The SAVIME open-source system has been developed to support analytical queries over scientific data. Its offers an extremely efficient ingestion procedure, which practically eliminates the waiting time to analyze incoming data. It also supports dense and sparse arrays and non-integer dimension indexing. It offers a functional query language processed by a query optimiser that generates efficient query execution plans.

 

References

[Porto 2022] Fabio Porto, Patrick Valduriez: Data and Machine Learning Model Management with Gypscie. CARLA 2022 – Workshop on HPC and Data Sciences meet Scientific Computing, SCALAC, Sep 2022, Porto Alegre, Brazil. pp.1-2. 

[Zorrilla 2022] Rocío Zorrilla, Eduardo Ogasawara, Patrick Valduriez, Fabio Porto: A Data-Driven Model Selection Approach to Spatio-Temporal Prediction. SBBD 2022 – Brazilian Symposium on Databases, SBBD, Sep 2022, Buzios, Brazil. pp.1-12. 

[Silva 2020] A.C. Silva, H. Lourenço, D. Ramos, F. Porto, P. Valduriez. Savime: An Array DBMS for Simulation Analysis and Prediction. Journal of Information Data Management 11(3), 2020. 

 

By LNCC and Inria 

The post Managing Data and Machine Learning Models in HPC Applications first appeared on RISC2 Project.

]]>
RISC2 highly represented at CARLA 2022 https://www.risc2-project.eu/2022/10/13/risc2-highly-represented-at-carla-2022/ Thu, 13 Oct 2022 11:26:57 +0000 https://www.risc2-project.eu/?p=2481 RISC2 was part of the organization committee of the Latin America High-Performance Computing Conference (CARLA 2022), which took place between September 26 and 30, 2022, in Porto Alegre, Brazil. For the second yea in a row, the RISC2 consortium participated in the organization of different activities and presentations. RISC2 was responsible for the organization of […]

The post RISC2 highly represented at CARLA 2022 first appeared on RISC2 Project.

]]>
RISC2 was part of the organization committee of the Latin America High-Performance Computing Conference (CARLA 2022), which took place between September 26 and 30, 2022, in Porto Alegre, Brazil. For the second yea in a row, the RISC2 consortium participated in the organization of different activities and presentations.

RISC2 was responsible for the organization of the “HPC and Data Sciences meet Scientific Computing” workshop, on September 26, which gathered 15 participants. This workshop discussed different topics, such as Scientific Machine Learning, High Performance Scientific Computing, and Data Science. Álvaro Coutinho, Marta Mattoso (from COPPE/Federal University of Rio de Janeiro), Frédéric Valentin (from the National Laboratory for Scientific Computing), Luc Giraud, Stéphane Lanteri, and Patrick Valduriez (from Inria) were the organizers of the workshop.

RISC2 also organized a tutorial about physics-informed neural networks. Our partners from Brazil, Álvaro Coutinho and Romulo Montalvão, from the Federal University of Rio de Janeiro, António Tadeu Gomes and Frédéric Valentin, from the National Laboratory for Scientific Computing, were the instructors of the session.

Our partners Carlos Barrios, from the Universidad Industrial de Santander, was one of the General Chairs of the Conference. “With 130 participants from all over the world, CARLA 2022 was a space of “rediscover” (to rediscover us) after two years in virtual mode. More than the scientific tracks and the panels, CARLA 2022 allowed us to discuss the challenges and the strengthening of collaboration between the partners (old and new)”, says Carlos Barrios.

Various RISC2 members also gave different presentations. Alba Cervera-Lierta, from the Barcelona Supercomputing Center, was one of the Keynote Speakers of the CARLA Conference, with a presentation about Quantum Computing. Esteban Meneses, from CeNAT, participated in a presentation about “Implementing a GPU-Portable Field-Line Tracing Application with OpenMP Offload”. Pablo Mininni, from the University of Buenos Aires, was responsible for one of the invited talks about “Multi-level parallelisation of computational fluid dynamics codes using CUDA, MPI and OpenMP.”

CARLA is an international conference that provides a forum to foste the growth and strength of the HPC community in Latin America through the exchange and dissemination of new ideas, techniques, and research in HPC and its application areas.

Also during the conference, the RISC2 members had a networking meeting with the SCALAC members, reinforcing the partnership with the SCALAC network.

 

About CARLA 2022:

 

“CARLA 2022 was a space of “rediscover” (to rediscover us) after two years in virtual mode. More than the scientific tracks and the panels, CARLA 2022 allowed us to discuss the challenges and the strengthening of collaboration between the partners (old and new)”.

Carlos Barrios Hernandez,  Universidad Industrial de Santander

 

 

 

 

“Having the RISC2 project supporting a networking dinner in CARLA was crucial in building up the next research collaboration we want to have in the region. I am thoroughly satisfied with the experience of connecting with European and Latin American peers”.

Esteban Meneses, CeNAT

 

 

 

“Among the most important elements, I can highlight the quality and variety of paper presented. This indicates to me that the Latin American HPC community is growing and getting stronger. In addition, I was able to notice efforts to generate relations between Europe and Latin America through the RISC2 project”.

Elvis Rojas Ramírez, CeNAT

The post RISC2 highly represented at CARLA 2022 first appeared on RISC2 Project.

]]>
Webinar: HPC system and job monitoring with LLview https://www.risc2-project.eu/events/webinar-4-hpc-system-and-job-monitoring-with-llview/ Tue, 26 Jul 2022 12:39:25 +0000 https://www.risc2-project.eu/?post_type=mec-events&p=2245 Date: December 7, 2022 | 4 p.m. (UTC) Speakers: Vitor Silva and Filipe Guimarães, Jülich Supercomputer Centre Moderator: Esteban Mocskos, Universidad de Buenos Aires Check the speakers’ presentation slides here.  LLview is a monitoring infrastructure developed by the Jülich Supercomputing Centre with the objective to provide an easy to use and adaptable software suite for monitoring High Performance […]

The post Webinar: HPC system and job monitoring with LLview first appeared on RISC2 Project.

]]>

Date: December 7, 2022 | 4 p.m. (UTC)

Speakers: Vitor Silva and Filipe Guimarães, Jülich Supercomputer Centre

Moderator: Esteban Mocskos, Universidad de Buenos Aires

Check the speakers’ presentation slides here. 

LLview is a monitoring infrastructure developed by the Jülich Supercomputing Centre with the objective to provide an easy to use and adaptable software suite for monitoring High Performance Computing systems. With the emergence of large heterogeneous machines, in the range of Exascale, the challenges of monitoring such huge systems increase significantly. To address that, LLview is under continuous development in order to work for a wide range of hardware systems and software interfaces with negligible overhead and at the same time providing fast, reliable access to job reports, system-wide monitoring data, and real-time system information. That information is provided to system users, project advisors, support teams and system administrators, helping the managing of jobs, identification of performance issues at many levels and also helping the system administrators to find failures and system malfunctions. This webinar gives an overview of the different LLview components and their interaction with each other and the system. Moreover, particular attention is drawn to the system monitoring views and the job reporting features, as they allow to trace the entire life cycle of a job and can help identify problems and bottlenecks at a very early stage.

 

About the Speakers:

Vitor Silva received his Computer Science degree from Universiade Federal de Minas Gerais. His M.Sc was earned in Systems and Computer Engineering from Universidade Federal do Rio de Janeiro and later received his Ph.D from Universidade Federal de Minas Gerais, this time in Nuclear Engineering. He worked as software developer in the digital image processing field, but most of his career was in the Nuclear Engineering field, mainly working with computer modeling and solving Neutronics and Thermal-hydraulics problems related to nuclear reactors. He was also the main admin of a small cluster system installed from scratch. Since 2021 he has been working at the Jülich Supercomputing Centre with monitoring tools and simulation.

Filipe Guimarães is a computational physicist. Graduated in Physics, M.Sc in Physics and Ph.D in Physics from the Universidade Federal Fluminense. He has been working with High Performance Computing since 2014 – initially from a user’s side, but moved to the support side in 2020. Since then, one of his focuses was to improve monitoring tools used and developed at the Jülich Supercomputing Centre.

About the Moderator: Esteban Mocskos is a full-time professor at Universidad de Buenos Aires (UBA) and researcher at the Center for Computer Simulation (CSC-CONICET). He received his Ph.D. in Computer Science from UBA in 2008 and was postdoc at the Protein Modelling group at UBA. His research interests include distributed systems & blockchain, computer networks, processor architecture, and parallel programming. He is part of the steering committee of the Latin-American HPC CARLA conference and onE of the committee members of Argentina’s National HPC system.

The post Webinar: HPC system and job monitoring with LLview first appeared on RISC2 Project.

]]>
Webinar: Interactive High-Performance Computing with JupyterLab https://www.risc2-project.eu/events/webinar-2-interactive-high-performance-computing-with-jupyterlab/ Tue, 26 Jul 2022 12:31:35 +0000 https://www.risc2-project.eu/?post_type=mec-events&p=2241 Date: September 22, 2022 | 4 p.m. (UTC+1) Speaker: Jens Henrik Göbbert, JSC Moderator: Esteban Mocskos, Universidad de Buenos Aires Interactive exploration and analysis of large amounts of data from scientific simulations, in-situ visualization and application control are convincing scenarios for explorative sciences. Based on the open source software Jupyter or JupyterLab, a way has been available for […]

The post Webinar: Interactive High-Performance Computing with JupyterLab first appeared on RISC2 Project.

]]>

Date: September 22, 2022 | 4 p.m. (UTC+1)

Speaker: Jens Henrik Göbbert, JSC

Moderator: Esteban Mocskos, Universidad de Buenos Aires

Interactive exploration and analysis of large amounts of data from scientific simulations, in-situ visualization and application control are convincing scenarios for explorative sciences. Based on the open source software Jupyter or JupyterLab, a way has been available for some time now that combines interactive with reproducible computing while at the same time meeting the challenges of support for the wide range of different software workflows.

Even on supercomputers, the method enables the creation of documents that combine live code with narrative text, mathematical equations, visualizations, interactive controls, and other extensive output. However, a number of challenges must be mastered in order to make existing workflows ready for interactive high-performance computing. With so many possibilities, it’s easy to lose sight of the big picture. This webinar provides a compact introduction to high performance interactive computing.

Speaker’s presentation is available here.

About the Speaker: Jens Henrik Göbbert graduated in mechanical engineering in 2006 and worked until 2014 as a research assistant at the Institute for Technical Combustion in the area of turbulence modelling and high performance computing. He joined the cross-sectional group “Immersive Visualization” of the Jülich Aachen Research Alliance (part of the Virtual Reality Group of the IT Center at the RWTH Aachen University) and became part of the cross-sectional team “Visualization” of the Jülich Supercomputing Center at the FZJ in 2016 as an expert in visualization of large scientific data sets, in situ visualization & coupling and interactive supercomputing.

About the Moderator: Esteban Mocskos is a full-time professor at Universidad de Buenos Aires (UBA) and researcher at the Center for Computer Simulation (CSC-CONICET). He received his Ph.D. in Computer Science from UBA in 2008 and was postdoc at the Protein Modelling group at UBA. His research interests include distributed systems & blockchain, computer networks, processor architecture, and parallel programming. He is part of the steering committee of the Latin-American HPC CARLA conference and one of the committee members of Argentina’s National HPC system.

The post Webinar: Interactive High-Performance Computing with JupyterLab first appeared on RISC2 Project.

]]>
HPC and Data Sciences meet Scientific Computing Workshop https://www.risc2-project.eu/events/hpc-and-data-sciences-meet-scientific-computing-workshop/ Wed, 25 May 2022 12:11:59 +0000 https://www.risc2-project.eu/?post_type=mec-events&p=2113

The post HPC and Data Sciences meet Scientific Computing Workshop first appeared on RISC2 Project.

]]>

The post HPC and Data Sciences meet Scientific Computing Workshop first appeared on RISC2 Project.

]]>
CARLA 2022 https://www.risc2-project.eu/events/carla-2022/ Thu, 19 May 2022 08:24:25 +0000 https://www.risc2-project.eu/?post_type=mec-events&p=2050

The post CARLA 2022 first appeared on RISC2 Project.

]]>

The post CARLA 2022 first appeared on RISC2 Project.

]]>