industry - RISC2 Project https://www.risc2-project.eu Fri, 01 Sep 2023 13:49:12 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México https://www.risc2-project.eu/2023/05/24/subsequent-progress-and-challenges-concerning-the-mexico-ue-project-enerxico-supercomputing-and-energy-for-mexico/ Wed, 24 May 2023 09:38:01 +0000 https://www.risc2-project.eu/?p=2824 In this short notice, we briefly describe some afterward advances and challenges with respect to two work packages developed in the ENERXICO Project. This opened the possibility of collaborating with colleagues from institutions that did not participate in the project, for example from the University of Santander in Colombia and from the University of Vigo […]

The post Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México first appeared on RISC2 Project.

]]>
In this short notice, we briefly describe some afterward advances and challenges with respect to two work packages developed in the ENERXICO Project. This opened the possibility of collaborating with colleagues from institutions that did not participate in the project, for example from the University of Santander in Colombia and from the University of Vigo in Spain. This exemplifies the importance of the RISC2 project in the sense that strengthening collaboration and finding joint research areas and HPC applied ventures is of great benefit for both: our Latin American Countries and the EU. We are now initiating talks to target several Energy related topics with some of the RISC2 partners. 

The ENERXICO Project focused on developing advanced simulation software solutions for oil & gas, wind energy and transportation powertrain industries.  The institutions that collaborated in the project are for México: ININ (Institution responsible for México), Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Universidad Nacional Autónoma de México (UNAM IINGEN, FCUNAM), Universidad Autónoma Metropolitana-Azcapotzalco, Instituto Mexicano del Petróleo, Instituto Politécnico Nacional (IPN) and Pemex, and for the European Union: Centro de Supercómputo de Barcelona (Institution responsible for the EU), Technische Universitäts München, Alemania (TUM), Universidad de Grenoble Alpes, Francia (UGA), CIEMAT, España, Repsol, Iberdrola, Bull, Francia e Universidad Politécnica de Valencia, España.  

The Project contemplated four working packages (WP): 

WP1 Exascale Enabling: This was a cross-cutting work package that focused on assessing performance bottlenecks and improving the efficiency of the HPC codes proposed in vertical WP (UE Coordinator: BULL, MEX Coordinator: CINVESTAV-COMPUTACIÓN); 

WP2 Renewable energies:  This WP deployed new applications required to design, optimize and forecast the production of wind farms (UE Coordinator: IBR, MEX Coordinator: ININ); 

WP3 Oil and gas energies: This WP addressed the impact of HPC on the entire oil industry chain (UE Coordinator: REPSOL, MEX Coordinator: ININ); 

WP4 Biofuels for transport: This WP displayed advanced numerical simulations of biofuels under conditions similar to those of an engine (UE Coordinator: UPV-CMT, MEX Coordinator: UNAM); 

For WP1 the following codes were optimized for exascale computers: Alya, Bsit, DualSPHysics, ExaHyPE, Seossol, SEM46 and WRF.   

As an example, we present some of the results for the DualPHYysics code. We evaluated two architectures: The first set of hardware used were identical nodes, each equipped with 2 ”Intel Xeon Gold 6248 Processors”, clocking at 2.5 GHz with about 192 GB of system memory. Each node contained 4 Nvidia V100 Tesla GPUs with 32 GB of main memory each. The second set of hardware used were identical nodes, each equipped with 2 ”AMD Milan 7763 Processors”, clocking at 2.45 GHz with about 512 GB of system memory. Each node contained 4 Nvidia V100 Ampere GPUs with 40 GB of main memory each. The code was compiled and linked with CUDA 10.2 and OpenMPI 4. The application was executed using one GPU per MPI rank. 

In Figures 1 and 2 we show the scalability of the code for the strong and weak scaling tests that indicate that the scaling is very good. Motivated by these excellent results, we are in the process of performing in the LUMI supercomputer new SPH simulations with up to 26,834 million particles that will be run with up to 500 GPUs, which is 53.7 million particles per GPU. These simulations will be done initially for a Wave Energy Converter (WEC) Farm (see Figure 3), and later for turbulent models. 

Figure 1. Strong scaling test with a fix number of particles but increasing number of GPUs.

 

Figure 2. Weak scaling test with increasing number of particles and GPUs.

 

Figure 3. Wave Energy Converter (WEC) Farm (taken from https://corpowerocean.com/)

 

As part of WP3, ENERXICO developed a first version of a computer code called Black Hole (or BH code) for the numerical simulation of oil reservoirs, based on the numerical technique known as Smoothed Particle Hydrodynamics or SPH. This new code is an extension of the DualSPHysics code (https://dual.sphysics.org/) and is the first SPH based code that has been developed for the numerical simulation of oil reservoirs and has important benefits versus commercial codes based on other numerical techniques.  

The BH code is a large-scale massively parallel reservoir simulator capable of performing simulations with billions of “particles” or fluid elements that represent the system under study. It contains improved multi-physics modules that automatically combine the effects of interrelated physical and chemical phenomena to accurately simulate in-situ recovery processes. This has led to the development of a graphical user interface, considered as a multiple-platform application for code execution and visualization, and for carrying out simulations with data provided by industrial partners and performing comparisons with available commercial packages.  

Furthermore, a considerable effort is presently being made to simplify the process of setting up the input for reservoir simulations from exploration data by means of a workflow fully integrated in our industrial partners’ software environment.  A crucial part of the numerical simulations is the equation of state.  We have developed an equation of state based on crude oil data (the so-called PVT) in two forms, the first as a subroutine that is integrated into the code, and the second as an interpolation subroutine of properties’ tables that are generated from the equation of state subroutine.  

An oil reservoir is composed of a porous medium with a multiphase fluid made of oil, gas, rock and other solids. The aim of the code is to simulate fluid flow in a porous medium, as well as the behaviour of the system at different pressures and temperatures.  The tool should allow the reduction of uncertainties in the predictions that are carried out. For example, it may answer questions about the benefits of injecting a solvent, which could be CO2, nitrogen, combustion gases, methane, etc. into a reservoir, and the times of eruption of the gases in the production wells. With these estimates, it can take the necessary measures to mitigate their presence, calculate the expense, the pressure to be injected, the injection volumes and most importantly, where and for how long. The same happens with more complex processes such as those where fluids, air or steam are injected, which interact with the rock, oil, water and gas present in the reservoir. The simulator should be capable of monitoring and preparing measurement plans. 

In order to be able to perform a simulation of a reservoir oil field, an initial model needs to be created.  Using geophysical forward and inverse numerical techniques, the ENERXICO project evaluated novel, high-performance simulation packages for challenging seismic exploration cases that are characterized by extreme geometric complexity. Now, we are undergoing an exploration of high-order methods based upon fully unstructured tetrahedral meshes and also tree-structured Cartesian meshes with adaptive mesh refinement (AMR) for better spatial resolution. Using this methodology, our packages (and some commercial packages) together with seismic and geophysical data of naturally fractured reservoir oil fields, are able to create the geometry (see Figure 4), and exhibit basic properties of the oil reservoir field we want to study.  A number of numerical simulations are performed and from these oil fields exploitation scenarios are generated.

 

Figure 4. A detail of the initial model for a SPH simulation of a porous medium.

 

More information about the ENERXICO Project can be found in: https://enerxico-project.eu/

By: Jaime Klapp (ININ, México) and Isidoro Gitler (Cinvestav, México)

 

 

 

 

The post Subsequent Progress And Challenges Concerning The México-UE Project ENERXICO: Supercomputing And Energy For México first appeared on RISC2 Project.

]]>
Towards a greater HPC capacity in Latin America https://www.risc2-project.eu/2023/02/24/towards-a-greater-hpc-capacity-in-latin-america/ Fri, 24 Feb 2023 15:36:39 +0000 https://www.risc2-project.eu/?p=2739 High-Performance Computing (HPC) has proven to be a strong driver for science and technology development, and is increasingly considered indispensable for most scientific disciplines. HPC is making a difference in key topics of great interest such as climate change, personalised medicine, engineering, astronomy, education, economics, industry and public policy, becoming a pillar for the development […]

The post Towards a greater HPC capacity in Latin America first appeared on RISC2 Project.

]]>
High-Performance Computing (HPC) has proven to be a strong driver for science and technology development, and is increasingly considered indispensable for most scientific disciplines. HPC is making a difference in key topics of great interest such as climate change, personalised medicine, engineering, astronomy, education, economics, industry and public policy, becoming a pillar for the development of any country, and to which the great powers are giving strategic importance and investing billions of dollars, in competition without limits where data is the new gold.

A country that does not have the computational capacity to solve its own problems will have no alternative but to try to acquire solutions provided by others. One of the most important aspects of sovereignty in the 21st century is the ability to produce mathematical models and to have the capacity to solve them. Today, the availability of computing power commensurate with one’s wealth exponentially increases a country’s capacity to produce knowledge. in the developed world, it is estimated that for every dollar invested in supercomputing, the return to society is of the order of US$ 44(1) and to the academic world US$ 30(2). For these reasons, HPC occupies an important place on the political and diplomatic agendas of developed countries. 

In Latin America, investment in HPC is very low compared to what’s the US, Asia and Europe are doing. In order to quantify this difference, we present the tables below, which show the accumulated computing capacity in the ranking of the 500 most powerful supercomputers in the world – the TOP500(3) – (Table 1), and the local reality (Table 2). Other data are also included, such as the population (in millions), the number of researchers per 1,000 inhabitants (Res/1000), the computing capacity per researcher (Gflops/Res) and the computing capacity per US$ million of GPD. In Table 1, we have grouped the countries by geographical area. America appears as the area with the highest computing capacity, essentially due to the USA, which has almost 45% of the world’s computing capacity in the TOP500. It if followed by Asia and then Europe. Tis TOP500 list includes mainly academic research centres, but also industry ones, typically those used in applied research (many private ones do not wish to publish such information for obvious reasons). For example, in Brazil – which shows good computing capacity with 88,175 TFlops – the vast majority is in the hands of the oil industry and only about 3,000 TFlops are used for basic research. Countries listed in the TOP500 invest in HPC from a few TFlops per million GDP (Belgium 5, Spain 7, Bulgaria 8), through countries investing in the order of hundreds (Italy 176, Japan 151, USA 138), to even thousands, as is the case in Finland with 1,478. For those countries where we were able to find data on the number of researchers, these range from a few Gflops per researcher (Belgium 19, Spain 24, Hungary 52) to close to 1,000 GFlops, i.e. 1 TFlop (USA 970, Italy 966), with Finland surpassing this barrier with 4,647. Note that, unlike what happens locally, countries with a certain degree of development invest every 3-4 years in supercomputing, so the data we are showing will soon be updated and there will be variations in the list. For example, this year a new supercomputer will come into operation in Spain(4), which, with an investment of some 150 million euros, will give Spain one of the most powerful supercomputers in Europe – and the world.

Country Rpeak 

(TFlops)

Population

(millions)

Res/1000 GFlops/Res Tflops/M US$
United States 3.216.124 335 9.9 969.7 138.0
Canada 71.911 39 8.8 209.5 40.0
Brazil 88.175 216 1.1 371.1  51.9
AMERICA 3.376.211 590      
           
China 1.132.071 1400     67.4
Japan 815.667 124 10.0 657.8 151.0
South Korea 128.264 52 16.6 148.6 71.3
Saudi Arabia 98.982 35     141.4
Taiwan 19.562 23     21.7
Singapore 15.785 6     52.6
Thailand 13.773 70     27.5
United Arab Emirates 12.164 10     15.2
India 12.082 1380     4.0
ASIA 2.248.353 3100      
           
Finland 443.391 6 15.9 4647.7 1478.0
Italy 370.262 59 6.5 965.5 176.3
Germany 331.231 85 10.1 385.8 78.9
France 251.166 65 11.4 339.0 83.7
Russia 101.737 145     59.8
United Kingdom 92.563 68 9.6 141.8 29.9
Netherlands 56.740 18 10.6 297.4 56.7
Switzerland 38.600 9 9.4 456.3 48.3
Sweden 32.727 10 15.8 207.1 54.5
Ireland 26.320 5 10.6 496.6 65.8
Luxembourg 18.291 0.6     365.8
Poland 17.099 38 7.6 59.2 28.5
Norway 17.031 6 13.0 218.3 34.1
Czech Republic 12.914 10 8.3 155.6 43.0
Spain 10.296 47 7.4 29.6 7.4
Slovenia 10.047 2 9.9 507.4 167.5
Austria 6.809 9 11.6 65.2 13.6
Bulgaria 5.942 6     8.5
Hungary 4.669 10 9.0 51.9 23.3
Belgium 3.094 12 13.6 19.0 5.2
EUROPA 1.850.934 610.6      
OTHER          
Australia 60.177 26     40.1
Morocco 5.014 39     50.1

Table 1. HPC availability per researcher and relative to GDP in the TOP500 countries (includes HPC in industry).

The local reality is far from this data. Table 2 shows data from Argentina, Brazil, Chile and Mexico. In Chile, the availability of computing power is 2-3 times less per researcher than in countries with less computing power in the OECD and up to 100 times less than a researcher in the US. In Chile, our investment measured in TFlops per million US$ of GDP is 166 times less than in the US; with respect to European countries that invest less in HPC it is 9 times less, and with respect to the European average (including Finland) it is 80 times less, i.e. the difference is considerable. It is clear that we need to close this gap. An investment go about 5 million dollars in HPC infrastructure in the next 5 years would close this gap by a factor of almost 20 times our computational capacity. However, returning to the example of Spain, the supercomputer it will have this year will offer 23 times more computing power than at present and, therefore, we will only maintain our relative distance. If we do not invest, the dap will increase by at least 23 times and will end up being huge. Therefore, we do not only need a one-time investment, but we need to ensure a regular investment. Some neighbouring countries are already investing significantly in supercomputing. This is the case in Argentina, where they are investing 7 million dollars (2 million for the datacenter and 5 million to buy a new supercomputer), which will increase their current capacities by almost 40 times(5).

Country Rpeak 

(TFlops)

Population (millions) Res/1000 GFlops/Res Tflops/M US$
Brazil* 3.000 216 1.1  12.6 1.8
Mexico 2.200 130 1.2 14.1 1.8
Argentina 400 45 1.2 7.4  0.8
Chile 250 20 1.3 9.6 0.8

Table 2. HPC availability per researcher and relative to GDP in the region (*only HPC capacity in academia is considered in this table).

For the above reasons, we are working to convince the Chilean authorities that we must have greater funding and, more crucially, permanent state funding in HPC. In relation to this, on July 6 we signed a collaboration agreement between 44 institutions with the support of the Ministry of Science to work on the creation of the National Supercomputing Laboratory(6). The agreement recognised that supercomputers are a critical infrastructure for Chile’s development, that it is necessary to centralise the requirements/resources at the national level, obtain permanent funding from the State and create a new institutional framework to provide governance. In an unprecedented inter-institutional collaboration in Chile, the competition for HPC resources at the national level is eliminated ad the possibility of direct funding from the State is opened up without generating controversy.

Undoubtedly, supercomputing is a fundamental pillar for the development of any country, where increasing investment provides a strategic advantage, and in Latin America we should not be left behind.

By NLHPC

 

References

(1) Hyperion Research HPC Investments Bring High Returns

(2) EESI-2 Special Study To Measure And Model How Investments In HPC Can Create Financial ROI And Scientific Innovation In Europe 

(3) https://top500.org/ 

(4) https://www.lavanguardia.com/ciencia/20230129/8713515/llega-superordenador-marenostrum-5-bsc-barcelona.html

(5) https://www.hpcwire.com/2022/12/15/argentina-announces-new-supercomputer-for-national-science/

(6) https://uchile.cl/noticias/187955/44-instituciones-crearan-el-laboratorio-nacional-de-supercomputacion

 

The post Towards a greater HPC capacity in Latin America first appeared on RISC2 Project.

]]>
RISC2 Webinar Series Aims to Benefit HPC Research and Industry in Europe and Latin America https://www.risc2-project.eu/2023/02/15/risc2-webinar-series-aims-to-benefit-hpc-research-and-industry-in-europe-and-latin-america-3/ Wed, 15 Feb 2023 14:33:59 +0000 https://www.risc2-project.eu/?p=2746 RISC2 webinar series aims to benefit HPC research and industry in Europe and Latin America https://www.risc2-project.eu/2023/02/08/risc2-webinar-series-aims-to-benefit-hpc-research-and-industry-in-europe-and-latin-america-2/ Wed, 08 Feb 2023 14:24:55 +0000 https://www.risc2-project.eu/?p=2725 RISC2 webinar series aims to benefit HPC research and industry in Europe and Latin America https://www.risc2-project.eu/2023/02/07/risc2-webinar-series-aims-to-benefit-hpc-research-and-industry-in-europe-and-latin-america/ Tue, 07 Feb 2023 16:25:20 +0000 https://www.risc2-project.eu/?p=2711 RISC2 webinar series aims to benefit HPC research and industry in Europe and Latin America https://www.risc2-project.eu/2023/01/26/risc2-webinar-season-is-back-for-season-2/ Thu, 26 Jan 2023 13:32:50 +0000 https://www.risc2-project.eu/?p=2657 After the success of the first 4 webinars, the RISC2 Webinar Series “HPC System & Tools” is back for its 2nd season. The webinars will be happening until May 2023, starting on February 22. In each webinar, it will be presented the state-of-the-art in methods and tools for setting-up and maintaining HPC hardware and software infrastructures. […]

The post RISC2 webinar series aims to benefit HPC research and industry in Europe and Latin America first appeared on RISC2 Project.

]]>
After the success of the first 4 webinars, the RISC2 Webinar Series “HPC System & Tools” is back for its 2nd season. The webinars will be happening until May 2023, starting on February 22.

In each webinar, it will be presented the state-of-the-art in methods and tools for setting-up and maintaining HPC hardware and software infrastructures. The duration of each talk will be around 30-40 minutes, followed by a 10–15-minute moderated discussion with the audience.

There are already 4 webinars scheduled:

 

 

 

The post RISC2 webinar series aims to benefit HPC research and industry in Europe and Latin America first appeared on RISC2 Project.

]]>
Webinar: Developing complex workflows that include HPC, Artificial Intelligence and Data Analytics https://www.risc2-project.eu/events/webinar-5-developing-complex-workflows-that-include-hpc-artificial-intelligence-and-data-analytics/ Tue, 24 Jan 2023 10:51:32 +0000 https://www.risc2-project.eu/?post_type=mec-events&p=2661 Date: February 22, 2023 | 4 p.m. (UTC) Speaker: Rosa M. Badia, Barcelona Supercomputing Center Moderator: Esteban Mocskos, Universidad de Buenos Aires The evolution of High-Performance Computing (HPC) systems towards every-time more complex machines is opening the opportunity of hosting larger and heterogeneous applications. In this sense, the demand for developing applications that are not purely HPC, but […]

The post Webinar: Developing complex workflows that include HPC, Artificial Intelligence and Data Analytics first appeared on RISC2 Project.

]]>

Date: February 22, 2023 | 4 p.m. (UTC)

Speaker: Rosa M. Badia, Barcelona Supercomputing Center

Moderator: Esteban Mocskos, Universidad de Buenos Aires

The evolution of High-Performance Computing (HPC) systems towards every-time more complex machines is opening the opportunity of hosting larger and heterogeneous applications. In this sense, the demand for developing applications that are not purely HPC, but that combine aspects of Artifical Intelligence and or Data analytics is becoming more common. However, there is a lack of environments that support the development of these complex workflows. The webinar will present PyCOMPSs, a parallel task-based programming in Python. Based on simple annotations, sequential Python programs can be executed in parallel in HPC-clusters and other distributed infrastructures.

PyCOMPSs has been extended to support tasks that invoke HPC applications and can be combined with Artificial Intelligence and Data analytics frameworks.

Some of these extensions are made in the framework of the eFlows4HPC project, which in addition is developing the HPC Workflows as a Service (HPCWaaS) methodology to make the development, deployment, execution and reuse of workflows easier. The webinar will present the current status of the PyCOMPSs programming model and how it is being extended in the eFlows4HPC project towards the project needs. Also, the HPCWaaS methodology will be introduced

About the speaker: Rosa M. Badia holds a PhD on Computer Science (1994) from the Technical University of Catalonia (UPC).  She is the manager of the Workflows and Distributed Computing research group at the Barcelona Supercomputing Center (BSC).

Her current research interests are programming models for complex platforms (from edge, fog, to Clouds and large HPC systems).  The group led by Dr. Badia has been developing StarSs programming model for more than 15 years, with a high success in adoption by application developers. Currently the group focuses its efforts in PyCOMPSs/COMPSs, an instance of the programming model for distributed computing including Cloud.

Dr Badia has published nearly 200 papers in international conferences and journals in the topics of her research. Her group is very active in projects funded by the European Commission and in contracts with industry. Dr Badia is the PI of the eFlows4HPC project.

Registrations are now closed.

 

The post Webinar: Developing complex workflows that include HPC, Artificial Intelligence and Data Analytics first appeared on RISC2 Project.

]]>
Advanced Computing Collaboration to Growth Sustainable Ecosystems https://www.risc2-project.eu/2022/12/12/advanced-computing-collaboration-to-growth-sustainable-ecosystems/ Mon, 12 Dec 2022 10:45:48 +0000 https://www.risc2-project.eu/?p=2612 The impact of High-Performance Computing (HPC) in different contexts related to the needs of high capabilities and strategies to simulate or to compute is very known. In the development of the RISC2 project, observing the project’s main goals, it is not a potential impact to support scientific challenges recognised after the exploration but an essential […]

The post Advanced Computing Collaboration to Growth Sustainable Ecosystems first appeared on RISC2 Project.

]]>
The impact of High-Performance Computing (HPC) in different contexts related to the needs of high capabilities and strategies to simulate or to compute is very known. In the development of the RISC2 project, observing the project’s main goals, it is not a potential impact to support scientific challenges recognised after the exploration but an essential requirement for scientific, productive, and social activities. Different outcomes are presented in the academic spaces as the workshops and main tracks of the Latin American Conference on High-Performance Computing (CARLA 2023). In these spaces, different RISC2 proposals show how HPC allows competitiveness, demands collaboration to attack global interests, and guarantees sustainability.

In the European and Latin American (EuroLatAm) HPC ecosystems, it tis possible to identify actors in different domains: industry, academy, research, society, and government. Each of them, at different levels, has a group of demands or interactions, depending on the interests. I.e., the industry demands capabilities to have HPC solutions for productivity and wants skills from the academy to perform development actors to build applications to use solutions. Another example could be the relationship between research and the government. In the HPC Ecosystem, collaborations allow synergies to face common interests. Still, it demands policies and coordinated roadmaps to support long-term projects and activities with a clear impact on society.

Of course, a historical relationship exists between Latin America and Europe from colonial history. In the case of advanced computing projects, it is possible to identify, from the first EuroLatAm Grid Computing projects more than twenty years ago until the real supercomputing projects such as RISC and RISC2. Still, now, more with shared interests and the different EuroLatAm HPC projects improve competitiveness and collaboration. Competitiveness for industrial and productive business, partnership (and competitiveness) in science and education goals, and human wellness. So paraphrasing Mateo Valero “who does not compute does not compete”, I would add “who does not collaborate does not survive”.

Taking collaboration and competitiveness, the RISC2 project allows identifying sustainability elements and sustainable workflows for different projects. The impressive interaction between the actors of the HPC EuroLatAm ecosystem has not only given scientific results but also policies, recommendations, best practices, and new questions. For these outcomes, in the past 2022 Supercomputing Conference, RISC2 was awarded the 2022 HPCWire Editors’ Choice Award as the Best HPC Collaboration.

Sustainable advanced computing ecosystems and their growth are evident with the knowledge of the results of projects such as RISC2. Collaboration, interaction, and competitiveness build human development and guarantee development, technological diversification, and peer-to-peer relationships to attack common interests and problems. So, RISC2 is a crucial step to advance to a RISC3 as it was at the time of the previous RISC.

 

By Universidad Industrial de Santander

The post Advanced Computing Collaboration to Growth Sustainable Ecosystems first appeared on RISC2 Project.

]]>
RISC2 attended the Supercomputing Conference 2022 https://www.risc2-project.eu/2022/11/22/risc2-attended-the-supercomputing-conference-2022/ Tue, 22 Nov 2022 12:12:24 +0000 https://www.risc2-project.eu/?p=2594 The RISC2 team participated in the Supercomputing Conference 2022, in Dallas, Texas. The International Conference for High Performance Computing, Networking, Storage, and Analysis, which took place between November 13 an 18, was a great opportunity for networking and to foster collaboration. Our partners Carlos Barrios Hernandez (from Industrial University of Santander) and Esteban Meneses (from […]

The post RISC2 attended the Supercomputing Conference 2022 first appeared on RISC2 Project.

]]>
The RISC2 team participated in the Supercomputing Conference 2022, in Dallas, Texas. The International Conference for High Performance Computing, Networking, Storage, and Analysis, which took place between November 13 an 18, was a great opportunity for networking and to foster collaboration.

Our partners Carlos Barrios Hernandez (from Industrial University of Santander) and Esteban Meneses (from Costa Rica National High Technology Center) participated directly on the “Americas HPC Collaboration” session, on November 16, which aimed to showcase opportunities and experiences between different HPC networks. On this session, Philippe Navaux (from UFRGS and SCALAC) presented the RISC2 project.

It was also during the conference that RISC2 was honoured with the HPCwire Editors’ Choice Award for “Best HPC Collaboration (Academia/Government/Industry)” 2022.

The partners representing RISC2 were Fabrizio Gagliardi (from Barcelona Supercomputing Center), Rui Oliveira (from INESC TEC), Bernd Mohr (from Jülich Supercomputing Centre), Carlos Barrios Hernandez (from Industrial University of Santander), Esteban Meneses (from Costa Rica National High Technology Center), Pedro Alberto (From University of Coimbra), and Philippe Navaux (from UFRGS and SCALAC).

The post RISC2 attended the Supercomputing Conference 2022 first appeared on RISC2 Project.

]]>
RISC2 receives honors in 2022 HPCwire Readers’ and Editors’ Choice Awards https://www.risc2-project.eu/2022/11/17/risc2-receives-honors-in-2022-hpcwire-readers-and-editors-choice-awards/ Thu, 17 Nov 2022 11:17:39 +0000 https://www.risc2-project.eu/?p=2566 The RISC2 project has been recognised in the annual HPCwire Readers’ and Editors’ Choice Awards, presented at the 2022 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22), in Dallas, Texas. RISC2 was selected for the Best HPC Collaboration (Academia/Government/Industry). Fabrizio Gagliardi, director of the RISC2, says “I feel particularly honored by this […]

The post RISC2 receives honors in 2022 HPCwire Readers’ and Editors’ Choice Awards first appeared on RISC2 Project.

]]>
The RISC2 project has been recognised in the annual HPCwire Readers’ and Editors’ Choice Awards, presented at the 2022 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22), in Dallas, Texas. RISC2 was selected for the Best HPC Collaboration (Academia/Government/Industry).

Fabrizio Gagliardi, director of the RISC2, says “I feel particularly honored by this recognition on behalf of all the project members who have worked so hard to achieve in such a short time, and with limited resources, a considerable impact in promoting HPC activities in Latin America in collaboration with Europe”.

Editors’ Choice: Best HPC Collaboration (Academia/Government/Industry)

The RISC2 project, following the RISC2 Project, aims to promote and improve the relationship between research and industrial communities, focusing on HPC application and infrastructure deployment, between Europe and Latin America. Led by the Barcelona Supercomputing Center (BSC), RISC2 brings together 16 partners from 12 different countries.

About the HPCwire Readers’ and Editors’ Choice Awards

The list of winners was revealed at the SC22 HPCwire booth and on the HPCwire website.

The coveted annual HPCwire Readers’ and Editors’ Choice Awards are determined through a nomination and voting process with the global HPCwire community, a well a selections from the HPCwire editors. The awards are an annual feature of the publication and constitute prestigious recognition from the HPC community . They are revealed each year too kick off the annual supercomputing conference, which showcases high performance computing, networking, storage, and data analysis.

“The 2022 Readers’ and Editors’ Choice Awards are exceptional, indeed. Solutions developed with HPC led the world out of the Pandemic, and we officially broke the Exascale threshold – HPC has now reached a billion, billion operations per second!” said Tom Tabor, CEO of Tabor Communications, publishers of HPCwire. “Between our worldwide readership of HPC experts and the most renowned panel of editors in the industry, the Readers’ and Editors’ Choice Awards represent resounding recognition of HPC accomplishments throughout the world. Our sincerest gratitude and hearty congratulations go out to all of the winners.”

The post RISC2 receives honors in 2022 HPCwire Readers’ and Editors’ Choice Awards first appeared on RISC2 Project.

]]>